A Nonmonotone Spectral Projected Gradient Method for Large-scale Topology Optimization Problems
نویسندگان
چکیده
An efficient gradient-based method to solve the volume constrained topology optimization problems is presented. Each iterate of this algorithm is obtained by the projection of a Barzilai-Borwein step onto the feasible set consisting of box and one linear constraints (volume constraint). To ensure the global convergence, an adaptive nonmonotone line search is performed along the direction that is given by the current and projection point. The adaptive cyclic reuse of the Barzilai-Borwein step is applied as the initial stepsize. The minimum memory requirement, the guaranteed convergence property, and almost only one function and gradient evaluations per iteration make this new method very attractive within common alternative methods to solve large-scale optimal design problems. Efficiency and feasibility of the presented method are supported by numerical experiments.
منابع مشابه
Spectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm
The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spect...
متن کاملInexact Spectral Projected Gradient Methods on Convex Sets
A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...
متن کاملSPG: Software for Convex-Constrained Optimization
Fortran 77 software implementing the SPG method is introduced. SPG is a nonmonotone projected gradient algorithm for solving largescale convex-constrained optimization problems. It combines the classical projected gradient method with the spectral gradient choice of steplength and a nonmonotone line search strategy. The user provides objective function and gradient values, and projections onto ...
متن کاملNonmonotone Spectral Projected Gradient Methods on Convex Sets
Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...
متن کاملSpectral projected gradient method for stochastic optimization
We consider the Spectral Projected Gradient method for solving constrained optimization porblems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The sample size update is bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012